Search results for " heavy-ion collisions"

showing 10 items of 35 documents

Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector

2019

This Letter describes the observation of the light-by-light scattering process, γγ→γγ, in Pb+Pb collisions at √sNN=5.02  TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73  nb−1, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy EγT>3  GeV and pseudorapidity |ηγ|<2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12±3 events. The observed excess of events…

Photonheavy ion: scatteringmass spectrum: (2photon)Physics::Instrumentation and Detectorsmeasured [channel cross section]General Physics and Astronomytransverse energy [photon]nucl-ex01 natural sciencesLight scatteringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Scattering processPseudorapidities[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Invariant massCollisionsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentelastic scattering [photon photon]Physicsphoton: transverse energyproton–proton collisionsLarge Hadron ColliderSettore FIS/01 - Fisica SperimentaleATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollPseudorapidityTransverse momentalight-by-light scatteringLHCchannel cross section: measuredParticle Physics - Experimentrelativistic heavy-ion collisionsjets(2photon) [mass spectrum]Transverse energyCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesATLAS experimentddc:500.2LHC ATLAS High Energy Physicstransverse momentumplanarity[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Relativistic heavy ions530AcoplanarityNuclear physicsscattering [heavy ion]Delbrück scattering0103 physical sciencesStandard deviationNuclear Physics - Experimentddc:5305020 GeV-cms/nucleonSelection criteria010306 general physicsperipheralCiencias Exactastwo-photon [mass spectrum]Integrated luminosityleadScience & Technologyhep-exrapidity [photon]Scatteringbackground:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Físicaphoton: rapidityElementary Particles and FieldsHigh Energy Physics::Experimentphoton photon: elastic scatteringmass spectrum: two-photonexperimental results
researchProduct

Highly occupied gauge theories in 2 + 1 dimensions : a self-similar attractor

2019

Motivated by the boost-invariant Glasma state in the initial stages in heavy-ion collisions, we perform classical-statistical simulations of SU(2) gauge theory in 2+1 dimensional space-time both with and without a scalar field in the adjoint representation. We show that irrespective of the details of the initial condition, the far-from-equilibrium evolution of these highly occupied systems approaches a unique universal attractor at high momenta that is the same for the gauge and scalar sectors. We extract the scaling exponents and the form of the distribution function close to this non-thermal fixed point. We find that the dynamics are governed by an energy cascade to higher momenta with sc…

quark-gluon plasmaScalar (mathematics)Adjoint representationhep-latFOS: Physical scienceshiukkasfysiikka114 Physical sciences01 natural sciencesComputer Science::Digital Librariessymbols.namesakeHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Correlation functionfysikk0103 physical sciencesAttractorquantum chromodynamicsGauge theory010306 general physicsUNIVERSAL DYNAMICSParticle Physics - PhenomenologyMathematical physicsDebyePhysics:Matematikk og Naturvitenskap: 400::Fysikk: 430 [VDP]010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)finite temperature field theoryParticle Physics - Latticehep-ph115 Astronomy Space scienceHigh Energy Physics - PhenomenologyDistribution functionsymbolsScalar fieldrelativistic heavy-ion collisions
researchProduct

Event-by-event hydrodynamics and thermal photon production in ultrarelativistic heavy ion collisions

2011

ydintörmäysfotonitfluktuaatiothydrodynamiikkaalkeishiukkasetultrarelativistic heavy-ion collisions theory
researchProduct

Exploring the applicability of dissipative fluid dynamics to small systems by comparison to the Boltzmann equation

2018

[Background] Experimental data from heavy-ion experiments at RHIC-BNL and LHC-CERN are quantitatively described using relativistic fluid dynamics. Even p+A and p+p collisions show signs of collective behavior describable in the same manner. Nevertheless, small system sizes and large gradients strain the limits of applicability of fluid-dynamical methods. [Purpose] The range of applicability of fluid dynamics for the description of the collective behavior, and in particular of the elliptic flow, of small systems needs to be explored. [Method] Results of relativistic fluid-dynamical simulations are compared with solutions of the Boltzmann equation in a longitudinally boost-invariant picture. …

Nuclear TheoryFLOWMODELSFOS: Physical sciencesHEAVY-ION COLLISIONShiukkasfysiikka01 natural sciences114 Physical sciencesPhysics::Fluid DynamicsNuclear Theory (nucl-th)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesFluid dynamicsInitial value problemTensor010306 general physicsRELATIVISTIC FLUIDSKINETIC-THEORYPhysicscollective flowta114010308 nuclear & particles physicsElliptic flowReynolds number16. Peace & justiceBoltzmann equationFREEZE-OUTHigh Energy Physics - PhenomenologyClassical mechanicssymbolsDissipative systemKnudsen numberhydrodynamic modelsrelativistic heavy-ion collisions
researchProduct

Predictions for multiplicities and flow harmonics in 5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider

2018

We present the next-to-leading-order event-by-event EKRT model predictions for the centrality dependence of the charged hadron multiplicity in the pseudorapidity interval $|\eta|\le 0.5$, and for the centrality dependence of the charged hadron flow harmonics $v_n\{2\}$ obtained from 2-particle cumulants, in $\sqrt{s_{NN}}=5.44$ TeV Xe+Xe collisions at the CERN Large Hadron Collider. Our prediction for the 0-5 \% central charged multiplicity is $dN_{\rm ch}/d\eta =1218\pm 46$. We also predict $v_n\{2\}$ in Xe+Xe collisions to increase more slowly from central towards peripheral collisions than those in a Pb+Pb system. We find that at $10 \dots 50$\% centralities $v_2\{2\}$ is smaller and $v_…

QuarkParticle physicsNuclear TheoryHadronFOS: Physical scienceshiukkasfysiikka01 natural sciences114 Physical sciencesNuclear physicsENERGYNuclear Theory (nucl-th)GLUON DISTRIBUTION-FUNCTIONSHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBAYESIAN-ANALYSISRapidityNUCLEAR COLLISIONS010306 general physicsNuclear ExperimentPhysicscollective flowta114010308 nuclear & particles physicsparticle and resonance productionHigh Energy Physics::PhenomenologyHIGH-DENSITY QCDQUARKMultiplicity (mathematics)Nuclear matterHigh Energy Physics - PhenomenologyPseudorapidityHigh Energy Physics::ExperimentImpact parameterhydrodynamic modelsCentralityrelativistic heavy-ion collisions
researchProduct

Kaon-proton strong interaction at low relative momentum via femtoscopy in Pb-Pb collisions at the LHC

2021

Physics letters / B 822, 136708 (2021). doi:10.1016/j.physletb.2021.136708

atom: exoticheavy ion: scatteringnucleon: paircorrelation [momentum]exoticheavy ion scatteringmomentum correlationmeasurement methodsHadron01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)effective field theoryALICE[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]effective field theory: chiralNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentchiral [effective field theory]effective field theory chiralPhysicsatom exoticSPECTROSCOPYatomstrong interactionPhysicsnucleontwo-particleheavy ion3. Good healthCERN LHC Collkinematicsforce CoulombScattering theoryNucleonforceCoulomb [force]Particle Physics - ExperimentParticle physicsNuclear and High Energy Physicsstrong interaction [K p]QC1-999FOS: Physical sciencesmomentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530K p: strong interaction ; heavy ion: scattering ; momentum: correlation ; force: Coulomb ; effective field theory: chiral ; atom: exotic ; nucleon: pair ; heavy ion scattering ; momentum correlation ; force Coulomb ; effective field theory chiral ; atom exotic ; nucleon pair ; CERN LHC Coll ; two-particle ; measurement methods ; sensitivity ; strong interaction ; ALICE ; kinematics ; TeV ; scattering length ; experimental results ; 5020 GeV-cms/nucleon ; hadron114 Physical sciencesscattering [heavy ion]0103 physical sciencesTeVSCATTERINGNuclear Physics - Experimentddc:5305020 GeV-cms/nucleonSensitivity (control systems)010306 general physicsexotic [atom]Exotic atomK p: strong interaction010308 nuclear & particles physicsScatteringforce: Coulombpairpair [nucleon]momentum: correlationScattering lengthHeavy Ions ExperimentsLOW-ENERGY K; DA-PHI-NE; SCATTERING; SPECTROSCOPYsensitivityLOW-ENERGY KchiralALICE heavy-ion collisions nuclear physicscorrelationscattering lengthCoulombHigh Energy Physics::ExperimenthadronDA-PHI-NEnucleon pairEnergy (signal processing)experimental results
researchProduct

Evolution of initial stage fluctuations in the glasma

2021

We perform a calculation of the one- and two-point correlation functions of energy density and axial charge deposited in the glasma in the initial stage of a heavy ion collision at finite proper time. We do this by describing the initial stage of heavy ion collisions in terms of freely evolving classical fields whose dynamics obey the linearized Yang-Mills equations. Our approach allows us to systematically resum the contributions of high momentum modes that would make a power series expansion in proper time divergent. We evaluate the field correlators in the McLerran-Venugopalan model using the glasma graph approximation, but our approach for the time dependence can be applied to a general…

PhysicsPower seriesquark-gluon plasmaField (physics)Nuclear Theory010308 nuclear & particles physicskvarkki-gluoniplasmaPhase (waves)FOS: Physical sciencesCharge (physics)Function (mathematics)Collision01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)nuclear physics0103 physical sciencesGraph (abstract data type)Proper timeStatistical physicsydinfysiikka010306 general physicsrelativistic heavy-ion collisions
researchProduct

Scattering and gluon emission in a color field : a light-front Hamiltonian approach

2021

We develop a numerical method to nonperturbatively study scattering and gluon emission of a quark from a colored target using a light-front Hamiltonian approach. The target is described as a classical color field, as in the color glass condensate effective theory. The Fock space of the scattering system is restricted to the |q⟩+|qg⟩ sectors, but the time evolution of this truncated system is solved exactly. This method allows us to study the interplay between coherence and multiple scattering in gluon emission. It could be applied both to studying subeikonal effects in high-energy scattering and to understanding jet quenching in a hot plasma.

Quarkelectron-ion collisionsNuclear TheoryField (physics)High Energy Physics::LatticeFOS: Physical scienceshiukkasfysiikka114 Physical sciences01 natural sciencesColor-glass condensateNuclear Theory (nucl-th)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)deep inelastic scattering0103 physical sciencesquantum chromodynamicsEffective field theory010306 general physicsquantum field theoryPhysics010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyTime evolutionGluonHigh Energy Physics - PhenomenologyQuantum electrodynamicssymbolskvanttiväridynamiikkakvanttikenttäteoriaHamiltonian (quantum mechanics)relativistic heavy-ion collisions
researchProduct

Temperature dependence of η / s of strongly interacting matter: Effects of the equation of state and the parametric form of ( η / s ) ( T )

2020

We investigate the temperature dependence of the shear viscosity to entropy density ratio η/s using a piecewise linear parametrization. To determine the optimal values of the parameters and the associated uncertainties, we perform a global Bayesian model-to-data comparison on Au+Au collisions at √sNN=200 GeV and Pb+Pb collisions at 2.76 TeV and 5.02 TeV, using a 2+1D hydrodynamical model with the Eskola-Kajantie-Ruuskanen-Tuominen (EKRT) initial state. We provide three new parametrizations of the equation of state (EoS) based on contemporary lattice results and hadron resonance gas, and use them and the widely used s95p parametrization to explore the uncertainty in the analysis due to the c…

collective flowquark-gluon plasmaequations of state of nuclear matterhydrodynamic modelshiukkasfysiikkaNuclear Experimentydinfysiikkarelativistic heavy-ion collisionsPhysical Review C
researchProduct

Anisotropic flow in Xe-Xe collisions at √sNN = 5.44 TeV

2018

The first measurements of anisotropic flow coefficients for vn mid-rapidity charged particles in Xe–Xe collisions at √sNN=5.44 TeV are presented. Comparing these measurements to those from Pb–Pb collisions at √sNN=5.02 TeV, v2 is found to be suppressed for mid-central collisions at the same centrality, and enhanced for central collisions. The values of v3 are generally larger in Xe–Xe than in Pb–Pb at a given centrality. These observations are consistent with expectations from hydrodynamic predictions. When both and are divided by their corresponding eccentricities for a variety of initial state models, they generally scale with transverse density when comparing Xe–Xe and Pb–Pb, with some d…

hiukkasfysiikkaNuclear Experimentydinfysiikkarelativistic heavy-ion collisions
researchProduct